
Biomedical Signal Processing and Control 91 (2024) 105873

A
1

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

MCICT: Graph convolutional network-based end-to-end model for
multi-label classification of imbalanced clinical text
Yao He a,b, Qingyu Xiong a,b,∗, Cai Ke b, Yaqiang Wang c, Zhengyi Yang b, Hualing Yi b, Qilin Fan b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, Chongqing, 401331, China
b School of Big Data and Software Engineering, Chongqing University, Chongqing, 401331, China
c School of Software Engineering, Chengdu University of Information Technology, Chengdu, 610225, China

A R T I C L E I N F O

Keywords:
Multi-label text classification
Clinical text classification
Graph convolutional neural network
Label co-occurrence
Additional information

A B S T R A C T

The rapid growth of clinical text data requires accurate and powerful automated classification methods to
support medical decision making and personalized healthcare. The multi-label classification task for clinical
texts is designed to assign the most relevant set of labels to each clinical text. However, this task presents
two significant challenges: (1) how to accurately extract fine-grained semantic features from complex clinical
texts, and (2) how to effectively mitigate the issue of label class imbalance. To overcome these problems, we
innovatively propose a novel Multi-label Classification of Imbalanced Clinical Text (MCICIT) model. In order
to obtain fine-grained semantic features from clinical texts, we utilize the specialized pre-trained language
model BioBERT, tailored for biomedical texts. To tackle the challenge of label class imbalance, we present a
Co-occurrence Based and Embeddings with Additional Information Enhanced Graph Convolutional Network
(CoEAI-GCN) module. On one hand, we enrich the label content by incorporating additional information
to acquire more accurate word embeddings as the feature matrix. On the other hand, we combine the co-
occurrence relationship of labels to construct a correlation matrix. Ultimately, label representations are learned
through a graph convolutional network. By conducting multi-label classification experiments on two clinical
text datasets extracted from real medical systems, our model achieves a 3.2% and 0.5% improvement in
F1 scores, respectively, compared to state-of-the-art deep learning models. Additionally, we conduct ablation
studies to explore the behaviors of the proposed model. These results together demonstrate that our proposed
MCICT effectively enhances the classification performance of imbalanced clinical texts.
1. Introduction

With the continuous progress in the medical field and the rapid
development of information technology, the quantity of clinical notes
and electronic health records has been rapidly increasing [1]. These
rich clinical medical data often contain essential information such as
symptom descriptions, diagnostic results, treatment plans, etc. How-
ever, they usually exist in an unstructured form. Therefore, how to
extract valuable knowledge from these massive unstructured data is of
great significance.

Clinical medical text analysis is a very important research field [2].
Through systematic analysis and mining of these data using natural
language processing (NLP) techniques [3], a profound understanding
of diseases, treatment methods, and patient health can be obtained.
Such data analysis can reveal hidden patterns, trends, and correlations,
providing strong support for medical decision-making [4] and personal-
ized healthcare [5]. Moreover, clinical text automatic classification can
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automatically classify text data into multiple related diagnostic result
categories. This facilitates automated assistance for doctors in rapid
diagnosis, treatment planning, and decision-making, thereby enhancing
diagnostic efficiency and accuracy.

Clinical text automatic classification mainly includes two forms:
multi-class classification and multi-label classification. Multi-class clas-
sification aims to divide text data into mutually exclusive categories,
where each text can only belong to one category. On the other hand,
multi-label classification allows a piece of text to be associated with
multiple label categories, which better reflects the complexity and
diversity of medical diagnoses in real-world scenarios.

Although previous research has made some progress in the field of
multi-label clinical text classification, two major challenges remain.

Firstly, class imbalance is a common problem in this context [6,7],
especially when confronted with a substantial number of labels. Taking
datasets of Traditional Chinese Medicine (TCM) and Preoperative Phys-
ical Examination (PPE) as examples, they are two typical imbalanced
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Fig. 1. Frequency statistics of labels in PPE and TCM.

clinical datasets collected from real medical systems. As shown in
Fig. 1, we notice that a few of labels are linked to a large number
of documents, while most labels are connected to a limited number
of documents. This difference stems from the fact that certain disease
or examination labels may be relatively common, while others may
be rare. As a result, the model may exhibit an inappropriate bias for
majority classes, resulting in poor classification performance for the
minority classes and compromising the accuracy of the overall results.

Secondly, accurately extracting fine-grained semantic features from
original clinical texts is also a major challenge [8,9]. Clinical medical
texts typically encompass a multitude of specialized terms and intricate
semantic structures. Enhancing the classification performance of clini-
cal texts necessitates a profound comprehension of these terms and the
precise capture of their meanings within the text. Therefore, the con-
version of the original text into a more precise feature representation
becomes imperative to achieve this goal.

To tackle the first challenge posed by label class imbalance, we
propose a Co-occurrence Based and Embeddings with Additional Infor-
mation Enhanced Graph Convolutional Network (CoEAI-GCN) module.
Firstly, we present an Embeddings with Additional Information (EAI)
method, which involves incorporating supplementary information to
obtain label embeddings, so as to get richer and more accurate label
representations. Secondly, through statistical analysis and visualization,
we found that there are often co-occurrence relationships between
labels, as shown in Fig. 2. Therefore, we consider taking advantages
of these dependencies between labels to mitigate class imbalance and
thus improve classification performance. Intuitively, if minority class
labels appear infrequently in the data set, but often co-occur with other
common labels, these co-occurrence relationships can help the model
infer these minority class labels. Consequently, we utilize label co-
occurrence to construct the correlation matrix to guide the propagation
of nodes in a graph convolutional network (GCN).

To address the second challenge of extracting semantic features
from complex clinical texts and effectively improving classification per-
formance, we propose a novel Multi-label Classification of Imbalanced
Clinical Text (MCICT) model. For the representation learning of clinical
texts, we utilize the BioBERT [10] and fine-tune it to fit specific medical
domain tasks. This process allows us to extract fine-grained semantic
2

Fig. 2. Co-occurrence statistics of labels in the TCM and PPE. (Due to the large number
of labels in the TCM dataset, we selected only the top two hundred most frequent labels
for visualizing their co-occurrence.)

information from the texts. On the other hand, we employ the CoEAI-
GCN to learn the feature representation of labels. Then, through a
sequence of mapping and processing layers, the label and document
representations generate prediction scores for each label and ultimately
determine the most relevant set of labels for a given text.

On the whole, our research aims to extract fine-grained semantic
features from clinical texts and alleviate class imbalance issues, so as to
improve the multi-label classification performance of clinical medical
text data. Through experiments and performance evaluations, we have
demonstrated the superior performance of our proposed model on two
authentic clinical text datasets.

The main contributions of this paper are as follows:

• In order to alleviate the issue of class imbalance, we present the
CoEAI-GCN module based on GCN, which integrates additional
information and leverages label co-occurrence;

• A novel end-to-end model, MCICT, is proposed for improving the
performance of multi-label clinical text classification;

• Through a series of experiments on clinical datasets extracted
from two real medical systems, our model outperforms state-
of-the-art models and achieves remarkable classification perfor-
mance.
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Fig. 3. Methods for multi-label text classification.

The rest of this paper is organized as follows: Section 2 introduces
related research and existing methods; Section 3 provides a detailed
description of our model and methods; Section 4 presents experimental
results and analysis; finally, Section 5 summarizes and discusses future
research directions.

2. Related work

2.1. Multi-label text classification

Text classification is one of the fundamental tasks in the field of
NLP, aiming to accurately categorize and manage a large amount of
text from different sources. In traditional single-label text classification
tasks, each text corresponds to only one category label, and the labels
are independent from each other, and the classification granularity is
relatively coarse. In contrast, the task of multi-label text classification
(MLTC) is more challenging because it requires assigning two or more
class labels to each text, which is closer to real-world scenarios. It
has been widely applied in fields such as web page tagging [11,
12], question-answering systems [13], sentiment analysis [14,15], and
biomedical text classification [16,17], etc. Due to the diversity of labels,
complex correlations, and imbalanced sample distributions, construct-
ing a simple and effective multi-label text classifier presents a major
challenge.

At present, the mainstream approaches for MLTC can be divided
into two main groups: traditional machine learning methods and deep
learning methods. In the traditional field of machine learning, algo-
rithms for MLTC can be further classified into two types: problem
transformation and algorithm adaptation approaches. The methods of
MLTC are shown in Fig. 3.

2.1.1. Problem transformation approaches
The aim of problem transformation methods is to develop data

transformation approaches for converting multi-label classification
problems into binary or multi-class classification tasks. There are
several methods that fall into this category, including Binary Relevance
(BR) [18], Label Powerset (LP) [19], Classifier Chains (CC) [20], Cali-
brated Ranking by Pairwise Comparison [21] and so on. BR is a simple
and direct method that transforms multi-label classification problems
into multiple independent binary classification subproblems. In other
words, each label has an independent classifier, but this approach
completely ignores the correlation between labels. In contrast, the LP
method treats each possible combination of labels as a unique class,
transforming the multi-label classification problem into a multi-class
classification task. However, as the number of labels increases, this
method may face the problem of label combination explosion. On the
other hand, CC convert the multi-label classification problem into a
3

Bayesian conditional chain of binary classification tasks. Overall, the
problem transformation methods may require quite a bit of time and
space when dealing with large-scale datasets and labels.

2.1.2. Algorithm adaptation approaches
Different from the problem transformation approaches, the algo-

rithm adaptation approaches address multi-label classification prob-
lems by adapting or extending traditional single-label classification
algorithms without data transformation. Within the framework of al-
gorithmic adaptation, researchers have proposed several methods, such
as MLkNN [22] and BRkNN [23], which are extensions of the kNN
classifier, as well as IBLRML [24], which combines logistic regression
with instance-based learning. Although algorithm adaptation methods
can preserve correlations between labels to some extent, they are
limited to utilizing first or second-order label correlations.

2.1.3. Neural network-based approaches
In recent years, with the rapid development of deep learning, MLTC

algorithms based on deep neural networks have been widely con-
cerned. Existing research on deep learning-based MLTC mainly focuses
on learning enhanced document representations and modeling label
dependencies to improve classification performance.

In terms of document representation, traditional feature engineer-
ing-based methods often fail to capture the complex semantics and
contextual dependencies in the text. Therefore, in recent years, deep
learning-based approaches have been widely applied to MLTC to learn
more comprehensive and expressive document representations. These
methods leverage technologies such as Convolutional Neural Networks
(CNN) [9,25], Recurrent Neural Networks (RNN) [26,27], and Trans-
former [28] to explore the internal relationships within the text and
obtain fine-grained text representations, thereby improving the effec-
tiveness and generalization ability of MLTC. In addition, pre-trained
language models such as ELMO [29], GPT [30] and BERT [31] have
been introduced for MLTC tasks, as they can learn text representations
with more semantic information. Furthermore, in specific domains,
specialized pre-trained language models are available. For example,
in the field of biomedicine, there exist pre-trained language models
customized for biomedical texts, like BioBERT, which are designed to
effectively handle the specialized terminology and knowledge present
in medical texts.

On the other hand, the researchers also focused on modeling the de-
pendencies between labels. In MLTC tasks, consideration of correlations
between labels plays a crucial role in accurate classification. For in-
stance, in clinical diagnosis tasks, the symptom label ‘‘fever’’ naturally
correlates with ‘‘headache’’. To capture such dependencies between
labels, some studies have employed attention mechanisms [32–34],
which aims to explore the semantic connections between labels and
input documents, thereby learning label-specific document represen-
tations for classification. While these methods have shown promising
results in MLTC, they encountered challenges in effectively distinguish-
ing similar labels. The reason is that labels that belong to similar
categories often appear together, which means that they correspond to
the same documents, resulting in similar label features being extracted
from these documents. As a result, these models face difficulty in
accurately predicting minority class labels.

2.2. Biomedical multi-label text classification

Accurate classification of diverse biomedical texts holds crucial
applications in biomedical and bioinformatics fields. These applications
include classification of clinical notes [16], intent classification of
medical texts [35], diagnosis of drug reaction [36], and more.

As biomedical literature rapidly expands, the demand for pre-
cise and robust automatic methods grows. These methods are crucial
in effectively choosing relevant labels from a candidate set for spe-
cific biomedical documents, thereby aiding the process of knowledge
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discovery. Deep learning methods have made significant advance-
ments in biomedical MLTC tasks. Researchers have proposed various
biomedical MLTC models based on deep learning. For example, MeSH-
ProbeNet [37] was a self-attention deep learning neural network capa-
ble of predicting multiple relevant labels for biomedical articles using
text information and journal titles. On the other hand, BERTMeSH [38]
adopted a transfer learning strategy and utilizes BioBERT to extract
information from full-text articles in PMC and titles or abstracts from
MEDLINE to build the classifier. However, these methods encoded
labels as one-hot vectors, resulting in increased storage and com-
putational costs, and more significantly, overlooking the semantic
correlations among labels. GHS-NET [17] was a generic hybridized
shallow neural network used for biomedical MLTC. It employed CNN
to extract the most discriminative features and Bi-LSTM layers to
accurately capture the local features of biomedical text. However,
this model did not take into account the use of the interconnected
relationships between labels to enhance the classification process.

Some researchers have noticed the importance of capturing the
interdependence between labels in the corpus. In 2017, Baker et al. [39]
proposed a novel hierarchical biomedical MLTC method that utilized
the co-occurrence relationship of corpus labels, including hypernyms,
to initialize the final output layer. In 2018, Li et al. [40] introduced
DeepLabeler, a neural network-based framework designed for auto-
matic disease classification. DeepLabeler employed document vector
feature representation and CNN to capture both local and global salient
features. Furthermore, addressing the deficiency of label decision mod-
ules in MLTC methods, Du et al. [41] introduced a straightforward
deep learning framework named ML-Net. This framework merged la-
bel prediction mechanisms with label counting prediction networks,
thereby optimizing the collection of corpus labels. In 2022, Chen
et al. [42] introduced the LIAR, a novel model to biomedical MLTC.
This model adeptly incorporated both label independence and correla-
tion, effectively harmonizing the two. This integration helps mitigate
the challenge of imbalanced label distribution to a certain extent.
Therefore, exploring and utilizing the dependencies between labels will
be beneficial for biomedical MLTC tasks.

In summary, despite some progress in the field of biomedical text
classification, there are still challenges in the multi-label classifica-
tion of clinical medical texts. Existing methods struggle to achieve
exceptional performance when dealing with slightly different types of
texts [41]. For example, a method that performs well in the classifica-
tion of biomedical literature may not achieve similar results in clinical
record classification. Therefore, the aim of our paper is to propose a
more general end-to-end model for multi-label classification of clinical
texts.

3. Proposed model

As illustrated in Fig. 4, our MCICT model consists of two key
modules: (1) Learning fine-grained representations of clinical document
using BioBERT (2) Learning label representations using the proposed
CoEAI-GCN. Ultimately, multi-label classification is achieved by gen-
erating prediction scores for multiple labels based on the learned
document and label representations.

3.1. Problem formulation

Let 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑁 be the set of clinical record documents, which
consists of 𝑁 document 𝑥𝑖 and its corresponding category label 𝑦𝑖 ∈
{0, 1}|𝐶|, where |𝐶| denotes the total number of labels. Each document
𝑥𝑖 contains J words 𝑥𝑖 = 𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑗 . The target of clinical multi-
label text classification is to learn the mapping from input clinical text
4

sequence to the most relevant labels.
3.2. Document representation learning

In this paper, we aim to improve the performance of clinical text
classification tasks, and a crucial step in achieving this is to learn
effective document representations. Representing clinical document
involves transforming the original unstructured clinical medical doc-
ument into machine-understandable and processable vector represen-
tations.

To accomplish this goal, we adopt the pre-trained language model
BioBERT to extract fine-grained information from clinical document.

𝑇 ′ = 𝑓𝐵𝑖𝑜𝐵𝐸𝑅𝑇 (𝑥𝑖, 𝛩), (1)

𝑖 denotes the 𝑖th training sample, and 𝛩 denotes pretrained model
ioBERT parameters, resulting in the feature vector 𝑇 ′ ∈ 𝑅𝑑𝑐 .

.3. Label representation learning

To mitigate the challenge posed by class imbalance, we adopt our
ovel CoEAI-GCN module to learn label representations. The module
rimarily comprises two components: (1) utilizing the EAI method
o generate word embeddings for labels, and (2) incorporating label
o-occurrence relationships into GCN learning to obtain the ultimate
epresentation of labels.

.3.1. Label embeddings with the EAI method
For the word embeddings of the labels, we adopt the EAI method

o enrich the representation of clinical labels. First, we utilize the
ikipedia API1 to extract the first two sentences of Wikipedia abstracts

elated to the input labels. These sentences serve as additional informa-
ion, providing medical background and conceptual explanations for
he labels, thereby enhancing the medical semantic understanding and
ontext of the labels.

Next, we take the extracted sentences as input and use the Sentence-
ransformer2 to generate label embedding vectors, denoted as 𝑉𝑒𝑚𝑏 ∈
|𝐶|∗𝑑 . The Sentence-Transformer is based on a pre-trained language
odel, trained on a large-scale corpus to possess rich semantic repre-

entation capabilities.
Due to the high dimensionality of the obtained label embedding

ectors at this stage, we apply Principal Component Analysis (PCA)
or dimensionality reduction. PCA identifies the most significant feature
irections (referred to as principal components) and maps the original
ata to a new low-dimensional space. The advantages of using PCA in-
lude reducing computational and storage costs, eliminating redundant
nformation in the data, and retaining the most representative features.
fter this operation, we can obtain the final label embedding feature
𝑒𝑚𝑏 ∈ 𝑅|𝐶|∗𝑑𝑙 .

Finally, we use the generated label embedding vectors, 𝑉𝑒𝑚𝑏 ∈
|𝐶|∗𝑑𝑙 , as the initialization node feature matrix 𝑋 ∈ 𝑅|𝐶|∗𝑑𝑙 for the
CN.

.3.2. GCN learning with label co-occurrence

a) Correlation matrix construction. Constructing an effective correla-
ion matrix is crucial for the GCN model as it regulates the propagation
f label information among nodes. To build the correlation matrix 𝐴 ∈
|𝐶|∗|𝐶|, we adopt a data-driven approach, approximating probabilities
(i) (representing the occurrence frequency of label i) and p(i, j)
representing the co-occurrence frequency of label i and label j) through
tatistical analysis of the labels’ occurrence and co-occurrence counts.
pecifically, the definition of each element 𝑎𝑖𝑗 ∈ 𝐴 in the correlation
atrix is as follows:

𝑖𝑗 =
𝑝(𝑖, 𝑗)
𝑝(𝑖)𝑝(𝑗)

=
𝐷(𝑖,𝑗)𝐷𝑇

𝐷(𝑖)𝐷(𝑗)
, (2)

1 https://pypi.org/project/Wikipedia-API/
2 https://www.sbert.net/

https://pypi.org/project/Wikipedia-API/
https://www.sbert.net/
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Fig. 4. The overall architecture of our MCICT model for clinical multi-label text classification.
𝐷(𝑖,𝑗) represents the number of documents that have both labels i and j,
𝐷(𝑖) represents the number of documents that have label i, and 𝐷𝑇 is the
total number of documents in the dataset. Intuitively, when the value
of 𝑎𝑖𝑗 for an edge is higher, it means that the corresponding vertices
connected by that edge have a higher correlation.

Constructing a correlation matrix based on the occurrences and co-
occurrences of labels can help mitigate the issue of class imbalance to
a certain extent. Specifically, this construction method compares the
co-occurrence frequencies of labels with their respective occurrence
probabilities to quantify the interrelationships between labels. As a
result, for those labels that appear less frequently in the dataset but co-
occur with other labels more frequently, the elements of the correlation
matrix will be relatively larger, which will help predict labels with
lower frequency.

b) Node updating mechanism in GCN. We utilize a GCN [43] to
learn the deep relationships among label-specific semantic components
guided by statistically derived label correlations. GCN is a neural
network that operates on graphs, enhancing node representations by
propagating messages between neighboring nodes.

Through the comparative experiments in Section 4.6, it is shown
that the proposed model performs best when using a single layer of
GCN. We take the component representations of the first layer 𝐻0

(i.e., the initialized node feature matrix 𝑋 ∈ 𝑅|𝐶|∗𝑑𝑙 obtained in
Section 3.3.1) as input and output the enhanced component representa-
tions 𝐻1 ∈ 𝑅|𝐶|∗𝑑′𝑙 , where 𝑑′𝑙 represents the dimensionality of the final
node representations. The propagation rule between layers is as follows:

𝐻1 = 𝜎(�̂�𝐻0𝑊 0), (3)

where 𝜎(.) represents the LeakyReLU [44] activation function. 𝑊 0 ∈
𝑅𝑑𝑙∗𝑑′𝑙 is the transformation matrix to be learned. �̂� represents the nor-
malized adjacency matrix, and the normalization method is as follows:

�̂� = 𝐷− 1
2 𝐴𝐷− 1

2 , (4)

where D is a diagonal degree matrix with entries 𝐷𝑖𝑗 =
∑

𝑗𝐴𝑖𝑗

3.4. Multi-label clinical text classification

After learning the label and document representations, the model
will generate prediction scores �̂�, each comprising |𝐶| elements, with
each element being a real number between 0 and 1. This is achieved
5

by mapping the label correlations to the document representations, as
shown below:

�̂� = 𝐻𝑇 ′. (5)

We use 𝑦 to represent the true labels of the documents, where
𝑦𝑖 ∈ {0, 1} indicates whether label i appears in the document. The
proposed model is trained using the multi-label cross-entropy loss:

𝐿 =
|𝐶|

∑

𝑐=1
𝑦𝑐 𝑙𝑜𝑔(�̂�𝑐 ) + (1 − 𝑦𝑐 )𝑙𝑜𝑔(1 − �̂�𝑐 ). (6)

4. Experiments and results

In this section, we first describe datasets and present the baselines
used for our comparison. Next, we discuss the settings and evaluation
metrics employed in our study. Finally, we present a detailed compari-
son of the experimental results and conduct ablation studies to explore
the behaviors of our model.

4.1. Datasets

To validate the effectiveness of our proposed MCICT model, we
conduct experiments using two clinically relevant datasets, TCM and
PPE. The detailed information of these datasets is shown in Table 1.

Traditional Chinese Medicine (TCM) dataset [45] is a collection of
inquiry records extracted from real medical information systems, accu-
mulated over years of clinical practice by traditional Chinese medicine
practitioners. Each record consists of chief complaints and syndromes,
as shown in Table 2. These records mostly consist of short text data,
characterized by concise yet semantically rich content, with descriptive
symptoms as labels.

Preoperative Physical Examination (PPE) dataset [46] comprises
preoperative examination records from a medical institution in the
year 2020. Each record includes preoperative diagnosis descriptions
and a series of required physical examination items before surgery,
as presented in Table 3. When processing this dataset, we utilize the
pkuseg [47] segmentation tool specialized in the medical domain,
which incorporates a dictionary containing more medical terminolo-
gies, ensuring more accurate segmentation results.
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Table 1
Detailed statistics information of the datasets TCM and PPE.

Dataset Number of instances Number of labels Number of labels in one instance Number of words in one instance

Min Max Avg Min Max Avg

TCM 10 000 929 1 5 1.85 1 35 8.84
PPE 34 679 228 50 120 89.94 1 591 21.64
Table 2
Sample examples of TCM.

Chief complaints Syndrome labels

(Palpitation, chest distress, breathe hard,
dry mouth, hydroadipsia, left rib-side
distention, normal diet, normal bowel
function, dark red and swollen tongue, thin
tongue fur, pulse waxes and wanes, rhythm
not neat)

(Phlegm hot inside,
heart-qi deficiency)

(Generalized body pain, worsened by
weather changes. Prefers warmth, aversion
to wind, cold intolerance, fatigue, dizziness,
weakness in lower limbs, lower abdominal
pain aggravated by pressure, abdominal
bloating, nocturnal dry mouth, red tongue,
thin yellowish coating with scanty moisture,
and a soft pulse)

(Asdthenic
splenonephro-yang,
dampness heat, blood
stasis)

Table 3
Sample examples of PPE.

Preoperative diagnosis description Physical examination items

(Rheumatic heart disease, heart valve
disease, mitral stenosis, severe aortic
stenosis, severe regurgitation, moderate
sinus rhythm, heart function level III)

(Heart valve disease,
dilated cardiomyopathy,
history of congestive heart
failure......)

(Gastric malignant tumor, chronic
bronchitis, emphysema, liver cyst, gastric
antrum cancer)

(History of respiratory
system infections in the
past 2 weeks, pneumonia
in the past 2 weeks,
atelectasis,
tracheoesophageal
fistula......)

4.2. Baselines

Considering the scarcity of multi-label classification models for clin-
ical texts, we select machine learning-based methods and recent deep
learning-based universal models from the field of MLTC. Additionally,
we choose several recently proposed multi-label classification models
for biomedical texts as comparison benchmarks. This comprehensive
evaluation allows us to assess the performance of our proposed MCICT
model and highlight its practical application value in specific domains.
Below is a brief introduction of the baseline models for comparison:

• Binary Relevance (BR) [18]: A fundamental multi-label classifi-
6

cation method that treats each label as an independent binary
classification task. For each label, a separate classifier is trained,
and their predictions are combined for final prediction.

• Classifier Chains (CC) [20]: A multi-label classification method
based on a chain-like structure. It considers the dependency be-
tween labels by using the predictions of preceding labels as inputs
for subsequent label classification.

• Label Powerset (LP) [19]: A common approach in multi-label clas-
sification, where each possible combination of labels is treated as
a separate category. By transforming the multi-label classification
problem into a multi-class classification problem, the LP model
can capture the correlations among labels.

• Transformer [28]: A neural network model based on self-attention
mechanism is widely used in NLP. It can capture long-range
dependency relationships and is suitable for handling long-text
data in MLTC.

• Sequence Generation Model (SGM) [48]: Based on sequence gen-
eration models, multiple labels are generated one by one by
predicting the probability distribution for each label.

• Label Embedding Enhanced SGM (LEE-SGM) [45]: The model
alleviates the exposure bias problem based on the SGM and
proposes a learning algorithm based on predetermined sampling,
which effectively incorporates label embeddings into the label
generation process.

• LSAN [33]: A generalized model for MLTC that uses both self-
attention and label-attention mechanisms.

• LDGN [8]: A label-specific dual graph neural network for MLTC,
modeling complete adaptive interactions based on statistical label
co-occurrence and dynamic reconstruction of graph components.

• GHS-NET [17]: A generic hybridized shallow neural network
used for biomedical MLTC. It employs CNN to extract the most
discriminative features and Bi-LSTM layers to accurately capture
the local features of biomedical text.

• LIAR [42]: It is employed for biomedical MLTC, effectively in-
tegrating label independence and correlation, and constructing a
new loss function called AWLoss to alleviate the long-tail distri-
bution.

4.3. Settings and evaluation metrics

We divide the TCM and PPE datasets into training, validation, and
testing sets in a random manner, with a ratio of 7:1:2. As for network
optimization, we use AdamW as the optimizer, with learning rates set
to 1e-4, and a weight decay of 0.01 (excluding biases and LayerNorm).
In the experiments, we utilize a single RTX3090 for training TCM and
PPE separately, with 35 and 30 epochs of training, and a batch size
of 16, respectively. For our model configuration, we set the number of
GCN layers to 1, and the embedding size of the GCN layer to 768.

In addition, we perform a detailed statistical analysis of the param-
eter sizes within the three primary modules of our MCICT model. These
modules encompass the BioBERT module for extracting document rep-
resentations, the EAI module for obtaining label word embeddings,
and the Co-GCN module (GCN learning with label co-occurrence) de-
signed for label feature learning. The parameter sizes contained in each
module are shown in the Table 4.

The multi-label classification task involves two evaluation metrics,
namely sample-based metrics and label-based metrics. In this paper, we
choose label-based metrics as the evaluation method, which includes

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 (𝑃𝑚𝑖𝑐𝑟𝑜), 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 (𝑅𝑚𝑖𝑐𝑟𝑜), and 𝐹1𝑚𝑖𝑐𝑟𝑜, to assess the
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Table 4
Parameter sizes of three primary modules.

Module Composition Parameter sizes

BioBert
Embedded Layer 86.46MB
Hidden Layer (12 layers) 27.01MB x 12
Output Layer 2.25MB

EAI Sentence-Transformer 313.26MB
Co-GCN GCN Layer (1 layer) 1.77MB

Table 5
Comparison of different results of various methods. For each dataset, boldface indicates
the best results. Results of some baselines on the TCM dataset (marked with ∗) are
directly cited from [45].

Model TCM PPE

𝑃𝑚𝑖𝑐𝑟𝑜 𝑅𝑚𝑖𝑐𝑟𝑜 𝐹1𝑚𝑖𝑐𝑟𝑜 𝑃𝑚𝑖𝑐𝑟𝑜 𝑅𝑚𝑖𝑐𝑟𝑜 𝐹1𝑚𝑖𝑐𝑟𝑜
BR∗ 0.843 0.402 0.544 0.933 0.896 0.914
CC∗ 0.764 0.460 0.574 0.922 0.894 0.908
LP∗ 0.606 0.609 0.608 0.949 0.945 0.947
Transformer∗ 0.713 0.484 0.576 0.972 0.947 0.959
SGM∗ 0.559 0.566 0.552 0.966 0.944 0.955
LEE-SGM∗ 0.620 0.611 0.615 0.964 0.951 0.957
LSAN 0.714 0.537 0.593 0.976 0.942 0.959
LDGN 0.772 0.531 0.629 0.970 0.954 0.960
GHS-NET 0.692 0.498 0.579 0.971 0.943 0.957
LIAR 0.762 0.542 0.633 0.973 0.950 0.961
MCICT(ours) 0.776 0.582 0.665 0.978 0.955 0.966

performance of different methods. These metrics focus on the overall
classification accuracy and are suitable for cases with imbalanced class
sample quantities. We calculate these metrics based on the values of
true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN) in the confusion matrix. Specifically, the definitions and
calculation methods of 𝑃𝑚𝑖𝑐𝑟𝑜, 𝑅𝑚𝑖𝑐𝑟𝑜, and 𝐹1𝑚𝑖𝑐𝑟𝑜 are as follows:

𝑃𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (7)

𝑅𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (8)

𝐹1𝑚𝑖𝑐𝑟𝑜 =
2 × 𝑃𝑚𝑖𝑐𝑟𝑜 × 𝑅𝑚𝑖𝑐𝑟𝑜
𝑃𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑚𝑖𝑐𝑟𝑜

(9)

4.4. Experimental results and analysis

Table 5 presents the best 𝐹1𝑚𝑖𝑐𝑟𝑜 results obtained by different meth-
ds under various settings. From the Table 5, it is evident that the
roposed MCICT outperforms all other baselines in terms of F1 scores
n both datasets.

It can be observed that, due to the impact of data class imbal-
nce, BR, CC, and the neural network model Transformer exhibit a
henomenon of extremely high precision and low recall in the TCM
ataset. Similar phenomena also appear in the PPE dataset. Although
he BR method achieves the highest precision, its recall is also the
owest. Therefore, we are more concerned about the composite metric
1 score. In addition, it is worth noting that the evaluation results of
he multi-class classification method LP on the TCM and PPE datasets
ndicate that several labels often co-occur, which confirms that the la-
els in these two datasets are somewhat correlated. Under the premise
f label correlation, if the labels are sparse, for example, the TCM
ataset has 929 syndrome labels, but the average number of syndromes
orresponding to each sample is 1.85, then LP performs well on this
ataset.

In comparison, the sequence-generating model SGM for labeling
orrelation modeling and its improved version LEE-SGM achieve more
alanced precision and recall rates on both TCM and PPE datasets.
7

owever, their F1 scores are comparatively low.
Table 6
The results for ablation study. ‘‘BM’’ is short for base model, representing the
foundational model. ‘‘EAI’’ represents the method of introducing additional information
into label embedding. ‘‘Co’’ signifies the utilization of label co-occurrence relationships
to construct correlation matrix.

Model TCM PPE

𝑃𝑚𝑖𝑐𝑟𝑜 𝑅𝑚𝑖𝑐𝑟𝑜 𝐹1𝑚𝑖𝑐𝑟𝑜 𝑃𝑚𝑖𝑐𝑟𝑜 𝑅𝑚𝑖𝑐𝑟𝑜 𝐹1𝑚𝑖𝑐𝑟𝑜
BM 0.761 0.550 0.639 0.967 0.942 0.954
BM + EAI 0.765 0.569 0.653 0.970 0.946 0.958
BM + EAI + Co 0.776 0.582 0.665 0.978 0.955 0.966

Additionally, the LDGN model also obtains good results, demon-
strating the advantage of using GCN to learn label relationships. How-
ever, LDGN does not directly utilize the label correlations learned from
GCN to represent label-specific texts. In contrast, our model not only
incorporates label semantics but also capitalizes on label correlations
through the construction of the proposed label correlation matrix. The
matrix guides the information propagation between nodes in the GCN.
Then, these label representations are directly mapped to document
representations.

For the GHS-NET model used in biomedical MLTC, we observe
that it achieves satisfactory performance on the PPE dataset, but its
performance on the TCM dataset is relatively poor. Due to the severe
class imbalance distribution in the TCM dataset, the GHS-NET model,
however, does not consider utilizing the correlated information among
labels to mitigate this issue.

The LIAR model achieves the second-best F1 score on both datasets,
which is a Transformer-based MLTC method for biomedical literature,
also capturing biomedical text features through BioBERT. Compared to
existing MLTC methods in biomedical literature, the LIAR model cap-
tures not only the label-specific features but also the label correlation.
However, one possible reason for its inferior performance compared
to our model is that it initially adopts Word2vec to initialize word em-
beddings and then learns label representations solely by calculating the
cosine similarity between text representations and label embeddings. In
contrast, our model employs the CoEAI-GCN module, resulting in more
accurate learned label representations and, consequently, providing a
more beneficial enhancement to classification performance.

In general, the experimental results indicate that the proposed
MCICT achieves the highest F1 scores on both the TCM and PPE
datasets, surpassing the compared state-of-the-art models by 3.2% and
0.5%, respectively. This demonstrates the effectiveness of fine-tuning
using domain specific pre-trained models and the importance of utiliz-
ing label correlation.

4.5. Further discussion

4.5.1. Ablation studies
As shown in Table 6, we conduct ablation studies to demonstrate the

effectiveness of the proposed modules. The data from the table reveals
that the model incorporating the EAI method achieved better results
compared to the base model, thus confirming the efficacy of integrating
additional information into label embedding. Furthermore, by incorpo-
rating the strategy for constructing a correlation matrix based on label
co-occurrence relationships into the model, the results of both tasks
are improved to varying degrees. This indicates that leveraging the
correlations between labels helps the model better predict less common
labels, thereby improving overall performance.

4.5.2. Comparison of deep learning models for document representation
learning

We validate the effectiveness of using the BioBERT pre-trained
model to learn clinical document representation and apply it to down-
stream MLTC tasks. For this purpose, we compare it with several
common document representation learning models, including simple
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Fig. 5. Comparison of training loss for different models on text features.

RNN, LSTM, GRU and BERT. In the experiments, we examine the loss
convergence results during the training process, as shown in Fig. 5.

The experimental results show that BERT and BioBERT pre-trained
models have the best performance. Notably, BioBERT stands out by
demonstrating the fastest and most significant reduction in loss during
the training process.

Furthermore, the performance of document feature learning using
simple RNN is slightly better than LSTM and GRU, which may be due
to the advantages of LSTM and GRU in processing long sequence data.
However, since our samples of clinical text are not particularly long,
the simpler RNN performs better at this task.

4.5.3. Effects of introducing label co-occurrence
We conduct a series of experiments to demonstrate the advantages

of combining co-occurrence information between labels to construct
GCN correlation matrix. The experimental results are shown in Fig. 6.

Specifically, we compare a correlation matrix constructed using the
unit matrix as the initial correlation matrix with one that considers
label co-occurrence. Firstly, when using the unit matrix as the initial
correlation matrix, it means that the correlations between labels are
not modeled and all labels are assumed to have the same level of
correlation. In our experiments, we find that the effect of using the unit
matrix was relatively weak.

Then, the correlation matrix is constructed using label co-occu-
rrence, and the matrix elements are calculated according to label oc-
currence frequency and co-occurrence frequency. We observe that this
method of constructing the correlation matrix yields better results than
8

Fig. 6. Effects of introducing label co-occurrence. (‘G’ represents using the unit
matrix as the correlation matrix, while ’G+O’ represents using the correlation matrix
constructed in our paper).

using the unit matrix. The precision, recall, and F1 scores all improved,
with F1 scores increasing by 0.8% and 1.2%, respectively, on both
tasks. The reason is that label co-occurrence can more accurately reflect
the association between labels, so that the model can better capture
the commonalities and characteristics between labels. Therefore, it can
alleviate class imbalance to a certain extent and improve classification
accuracy.

4.5.4. Effects of additional information on label embedding
We test the effect of different label embedding methods on the

performance of our proposed MCICT model, also compare well-known
embedding methods, such as OneHot, Word2vec [49], FastText [50],
and ELMo [29], with our proposed embedding method EAI applied to
the TCM and PPE datasets. As shown in Fig. 7, experimental results
demonstrate that our method is superior to other methods in the clinical
MLTC task.

Due to the specialized and complex nature of clinical texts, tra-
ditional word embedding methods may not effectively capture their
characteristics. However, our approach utilizes a specific source of
clinical text — Wikipedia, to enrich the semantic representation of
labels, so that they can better adapt to the unique features of the
medical domain.

The above shows that the introduction of additional information
into the label embedding methods can effectively improve the classi-
fication performance of the model, especially in specialized text tasks
such as the medical domain.
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Fig. 7. Comparison of different label embedding methods.

4.6. Parameter sensitivity of CoEAI-GCN

In this section, we first test the classification performance on two
datasets using GCNs of different layers.

As shown in the left figure of Fig. 8, the model achieve good results
with only one layer. We also observe that as the number of GCN
layers increased, the classification performance decreased. One possible
reason is that as the number of layers of the network increases, so does
the complexity of the model, which may lead to overfitting. Overfitting
can cause the model to perform well on the training set, but poorly on
data it has not seen before.

Next, we use only one layer on the different embedding dimensions
(256, 512, 768, 1024, and 2048) to evaluate our model. As shown
in the right figure in Fig. 8, we observe that the best performance
is achieved with the embedding dimension is 768. This is because a
lower embedding dimension may not be sufficient to represent label
information, and a higher embedding dimension does not necessarily
guarantee improved classification performance.

5. Conclusion

In this paper, we proposed an end-to-end model MCICT based on
GCN to tackle the MLTC task in clinical text. The MCICT model con-
sisted of two primary components. Firstly, BioBERT was used to extract
intricate semantic features from clinical texts. Secondly, the CoEAI-
GCN module was adopted to acquire label feature representations.
The introduced CoEAI-GCN module employed additional information
to enhance the precision of label embeddings and integrates label
9

Fig. 8. Test performance with 1, 2 and 3 GCN layers. (left) Test performance under
varying GCN embedding dimensions. (right).

co-occurrence knowledge in GCN to learn label representations. This
strategy effectively mitigated the problem of class imbalance. Through
a series of experiments on two real clinical text datasets, we demon-
strated that the MCICT model achieved good performance in multi-label
classification of imbalanced clinical texts.

In future work, we are considering incorporating a label attention
mechanism. This mechanism will direct attention to the most relevant
labels for a given text in the classification task. The exploration is
expected to more accurately capture correlations between text and
labels, leading to potential improvements in model performance.

CRediT authorship contribution statement

Yao He: Methodology, Validation, Writing – original draft. Qingyu
Xiong: Writing – review & editing, Supervision. Cai Ke: Conceptualiza-
tion, Visualization, Writing – review & editing. Yaqiang Wang: Data
curation, Investigation. Zhengyi Yang: Resources, Supervision, Vali-
dation. Hualing Yi: Conceptualization, Formal analysis, Investigation.
Qilin Fan: Data curation, Resources, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

This work was supported by the National NSFC (Grant No. 62102
053), the Natural Science Foundation of Chongqing, China (Grant No.
CSTB2022NSCQ-MSX1104), and Graduate Scientific Research and In-
novation Foundation of Chongqing, China (No. CYS22128). In addition,
we would like to thank Professor Zhu Tao and Professor Hao Xuechao
from the Department of Anesthesiology, West China Hospital, Sichuan
University, for their data set supporting this work.



Biomedical Signal Processing and Control 91 (2024) 105873Y. He et al.
References

[1] Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, Sandeep Kaushik, Big
data in healthcare: Management, analysis and future prospects, J. Big Data 6 (1)
(2019) 1–25.

[2] Kornelia Batko, Andrzej Ślęzak, The use of big data analytics in healthcare, J.
Big Data 9 (1) (2022) 3.

[3] Andrew Wen, Sunyang Fu, Sungrim Moon, Mohamed El Wazir, Andrew Rosen-
baum, Vinod C Kaggal, Sijia Liu, Sunghwan Sohn, Hongfang Liu, Jungwei Fan,
Desiderata for delivering NLP to accelerate healthcare AI advancement and a
mayo clinic NLP-as-a-service implementation, NPJ Digit. Med. 2 (1) (2019) 130.

[4] Miriam Reisman, EHRs: The challenge of making electronic data usable and
interoperable, Pharm. Ther. 42 (9) (2017) 572.

[5] Davide Cirillo, Alfonso Valencia, Big data analytics for personalized medicine,
Curr. Opin. Biotechnol. 58 (2019) 161–167.

[6] Kevin De Angeli, Shang Gao, Ioana Danciu, Eric B Durbin, Xiao-Cheng Wu,
Antoinette Stroup, Jennifer Doherty, Stephen Schwartz, Charles Wiggins, Mark
Damesyn, et al., Class imbalance in out-of-distribution datasets: Improving the
robustness of the TextCNN for the classification of rare cancer types, J. Biomed.
Inform. 125 (2022) 103957.

[7] Hongxia Lu, Louis Ehwerhemuepha, Cyril Rakovski, A comparative study on deep
learning models for text classification of unstructured medical notes with various
levels of class imbalance, BMC Med. Res. Methodol. 22 (1) (2022) 181.

[8] Qianwen Ma, Chunyuan Yuan, Wei Zhou, Songlin Hu, Label-specific dual graph
neural network for multi-label text classification, in: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), 2021, pp. 3855–3864.

[9] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, Yiming Yang, Deep learning for
extreme multi-label text classification, in: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
2017, pp. 115–124.

[10] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, Jaewoo Kang, BioBERT: A pre-trained biomedical language rep-
resentation model for biomedical text mining, Bioinformatics 36 (4) (2020)
1234–1240.

[11] Himanshu Jain, Yashoteja Prabhu, Manik Varma, Extreme multi-label loss func-
tions for recommendation, tagging, ranking & other missing label applications, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 935–944.

[12] Tirath Prasad Sahu, Reswanth Sai Thummalapudi, Naresh Kumar Nagwani, Au-
tomatic question tagging using multi-label classification in community question
answering sites, in: 2019 6th IEEE International Conference on Cyber Security
and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on
Edge Computing and Scalable Cloud, EdgeCom, IEEE, 2019, pp. 63–68.

[13] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, Ask me anything:
Dynamic memory networks for natural language processing, in: International
Conference on Machine Learning, PMLR, 2016, pp. 1378–1387.

[14] Yaqi Wang, Shi Feng, Daling Wang, Ge Yu, Yifei Zhang, Multi-label Chinese
microblog emotion classification via convolutional neural network, in: Web
Technologies and Applications: 18th Asia-Pacific Web Conference, APWeb 2016,
Suzhou, China, September 23-25, 2016. Proceedings, Part I, Springer, 2016, pp.
567–580.

[15] Mohammed Jabreel, Antonio Moreno, A deep learning-based approach for
multi-label emotion classification in tweets, Appl. Sci. 9 (6) (2019) 1123.

[16] Ghulam Mujtaba, Liyana Shuib, Norisma Idris, Wai Lam Hoo, Ram Gopal
Raj, Kamran Khowaja, Khairunisa Shaikh, Henry Friday Nweke, Clinical text
classification research trends: Systematic literature review and open issues,
Expert Syst. Appl. 116 (2019) 494–520.

[17] Muhammad Ali Ibrahim, Muhammad Usman Ghani Khan, Faiza Mehmood,
Muhammad Nabeel Asim, Waqar Mahmood, GHS-NET a generic hybridized
shallow neural network for multi-label biomedical text classification, J. Biomed.
Inform. 116 (2021) 103699.

[18] Matthew R Boutell, Jiebo Luo, Xipeng Shen, Christopher M Brown, Learning
multi-label scene classification, Pattern Recogn. 37 (9) (2004) 1757–1771.

[19] Grigorios Tsoumakas, Ioannis Vlahavas, Random k-labelsets: An ensemble
method for multilabel classification, in: European Conference on Machine
Learning, Springer, 2007, pp. 406–417.

[20] Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, Classifier chains for
multi-label classification, Mach. Learn. 85 (2011) 333–359.

[21] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Klaus Brinker,
Multilabel classification via calibrated label ranking, Mach. Learn. 73 (2008)
133–153.

[22] Min-Ling Zhang, Zhi-Hua Zhou, ML-KNN: A lazy learning approach to multi-label
10

learning, Pattern Recogn. 40 (7) (2007) 2038–2048.
[23] Eleftherios Spyromitros, Grigorios Tsoumakas, Ioannis Vlahavas, An empirical
study of lazy multilabel classification algorithms, in: Artificial Intelligence:
Theories, Models and Applications: 5th Hellenic Conference on AI, SETN 2008,
Syros, Greece, October 2-4, 2008. Proceedings 5, Springer, 2008, pp. 401–406.

[24] Weiwei Cheng, Eyke Hüllermeier, Combining instance-based learning and logistic
regression for multilabel classification, Mach. Learn. 76 (2009) 211–225.

[25] Francesco Gargiulo, Stefano Silvestri, Mario Ciampi, Deep convolution neural
network for extreme multi-label text classification, in: Healthinf, 2018, pp.
641–650.

[26] Priyanka Nigam, Applying Deep Learning to ICD-9 Multi-Label Classification from
Medical Records, Technical report, Technical report, Stanford University, 2016.

[27] Guibin Chen, Deheng Ye, Zhenchang Xing, Jieshan Chen, Erik Cambria, Ensemble
application of convolutional and recurrent neural networks for multi-label text
categorization, in: 2017 International Joint Conference on Neural Networks,
IJCNN, IEEE, 2017, pp. 2377–2383.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin, Attention is all you need, in:
Advances in Neural Information Processing Systems, vol.30, 2017.

[29] E. Matthew, Mark Neumann Peters, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, Luke Zettlemoyer, Deep contextualized word representations,
in: Proc. of NAACL. Vol. 5, 2018.

[30] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al., Im-
proving language understanding by generative pre-training, 2018, pp. 1–12,
Preprint.

[31] Jacob Devlin Ming-Wei Chang Kenton, Lee Kristina Toutanova, Bert: Pre-training
of deep bidirectional transformers for language understanding, in: Proceedings
of NaacL-HLT. vol. 1, 2019, p. 2.

[32] Cunxiao Du, Zhaozheng Chen, Fuli Feng, Lei Zhu, Tian Gan, Liqiang Nie,
Explicit interaction model towards text classification, in: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 33, no. 01, 2019, pp. 6359–6366.

[33] Lin Xiao, Xin Huang, Boli Chen, Liping Jing, Label-specific document represen-
tation for multi-label text classification, in: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP, 2019, pp.
466–475.

[34] Linkun Cai, Yu Song, Tao Liu, Kunli Zhang, A hybrid BERT model that incor-
porates label semantics via adjustive attention for multi-label text classification,
Ieee Access 8 (2020) 152183–152192.

[35] Helong Yu, Chunliu Liu, Lina Zhang, Chengwen Wu, Guoxi Liang, José Escorcia-
Gutierrez, Osama A Ghoneim, An intent classification method for questions in"
treatise on febrile diseases" based on TinyBERT-CNN fusion model, Comput. Biol.
Med. (2023) 107075.

[36] Trung Huynh, Yulan He, Alistair Willis, Stefan Rueger, Adverse drug reaction
classification with deep neural networks, in: Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers,
2016, pp. 877–887.

[37] Guangxu Xun, Kishlay Jha, Ye Yuan, Yaqing Wang, Aidong Zhang, MeSH-
ProbeNet: A self-attentive probe net for MeSH indexing, Bioinformatics 35 (19)
(2019) 3794–3802.

[38] Ronghui You, Yuxuan Liu, Hiroshi Mamitsuka, Shanfeng Zhu, BERTMeSH:
Deep contextual representation learning for large-scale high-performance MeSH
indexing with full text, Bioinformatics 37 (5) (2021) 684–692.

[39] Simon Baker, Anna Korhonen, Initializing neural networks for hierarchical
multi-label text classification, in: BioNLP 2017, 2017, pp. 307–315.

[40] Min Li, Zhihui Fei, Min Zeng, Fang-Xiang Wu, Yaohang Li, Yi Pan, Jianxin
Wang, Automated ICD-9 coding via a deep learning approach, IEEE/ACM Trans.
Comput. Biol. Bioinform. 16 (4) (2018) 1193–1202.

[41] Jingcheng Du, Qingyu Chen, Yifan Peng, Yang Xiang, Cui Tao, Zhiyong Lu, ML-
net: Multi-label classification of biomedical texts with deep neural networks, J.
Am. Med. Inform. Assoc. 26 (11) (2019) 1279–1285.

[42] Zihao Chen, Jing Peng, Learning label independence and relevance for multi-
label biomedical text classification, in: 2022 IEEE International Conference on
Systems, Man, and Cybernetics, SMC, IEEE, 2022, pp. 2776–2781.

[43] Thomas N. Kipf, Max Welling, Semi-supervised classification with graph con-
volutional networks, in: International Conference on Learning Representations,
2016.

[44] Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng, et al., Rectifier nonlinearities
improve neural network acoustic models, in: Proc. Icml. vol. 30, no. 1, Atlanta,
GA, 2013, p. 3.

[45] Yaqiang Wang, Feifei Yan, Xiaofeng Wang, Wang Tang, Hongping Shu, Label em-
bedding enhanced multi-label sequence generation model, in: Natural Language
Processing and Chinese Computing: 9th CCF International Conference, NLPCC
2020, Zhengzhou, China, October 14–18, 2020, Proceedings, Part II 9, Springer,
2020, pp. 219–230.

[46] Yaqiang Wang, Xiao Yang, Xuechao Hao, Hongping Shu, Guo Chen, Tao
Zhu, An unstructured data representation enhanced model for postoperative
risk prediction, in: Proceedings of the 21st Chinese National Conference on

Computational Linguistics, 2022, pp. 580–590.

http://refhub.elsevier.com/S1746-8094(23)01306-X/sb1
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb1
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb1
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb1
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb1
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb2
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb2
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb2
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb3
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb4
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb4
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb4
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb5
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb5
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb5
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb6
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb7
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb7
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb7
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb7
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb7
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb8
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb9
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb10
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb11
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb12
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb13
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb14
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb15
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb15
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb15
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb16
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb17
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb18
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb18
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb18
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb19
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb19
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb19
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb19
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb19
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb20
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb20
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb20
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb21
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb21
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb21
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb21
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb21
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb22
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb22
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb22
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb23
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb24
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb24
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb24
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb25
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb25
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb25
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb25
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb25
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb26
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb26
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb26
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb27
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb28
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb28
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb28
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb28
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb28
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb29
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb29
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb29
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb29
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb29
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb30
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb30
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb30
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb30
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb30
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb31
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb31
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb31
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb31
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb31
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb32
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb32
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb32
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb32
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb32
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb33
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb34
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb34
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb34
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb34
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb34
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb35
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb36
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb37
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb37
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb37
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb37
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb37
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb38
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb38
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb38
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb38
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb38
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb39
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb39
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb39
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb40
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb40
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb40
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb40
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb40
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb41
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb41
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb41
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb41
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb41
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb42
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb42
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb42
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb42
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb42
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb43
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb43
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb43
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb43
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb43
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb44
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb44
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb44
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb44
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb44
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb45
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb46


Biomedical Signal Processing and Control 91 (2024) 105873Y. He et al.
[47] Ruixuan Luo, Jingjing Xu, Yi Zhang, Zhiyuan Zhang, Xuancheng Ren, Xu Sun,
Pkuseg: A toolkit for multi-domain chinese word segmentation, 2019, arXiv
preprint arXiv:1906.11455.

[48] Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu, Houfeng Wang,
SGM: Sequence generation model for multi-label classification, in: Proceedings
of the 27th International Conference on Computational Linguistics, 2018, pp.
3915–3926.
11
[49] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient estimation of
word representations in vector space, 2013, arXiv preprint arXiv:1301.3781.

[50] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
Tomas Mikolov, Fasttext. zip: Compressing text classification models, 2016, arXiv
preprint arXiv:1612.03651.

http://arxiv.org/abs/1906.11455
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://refhub.elsevier.com/S1746-8094(23)01306-X/sb48
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1612.03651

	MCICT: Graph convolutional network-based end-to-end model for multi-label classification of imbalanced clinical text
	Introduction
	Related work
	Multi-label text classification
	Problem transformation approaches
	Algorithm adaptation approaches
	Neural network-based approaches

	Biomedical multi-label text classification

	Proposed model
	Problem formulation
	Document representation learning
	Label representation learning
	Label embeddings with the EAI method
	GCN learning with label co-occurrence

	Multi-label clinical text classification

	Experiments and results
	Datasets
	Baselines
	Settings and evaluation metrics
	Experimental results and analysis
	Further discussion
	Ablation studies
	Comparison of deep learning models for document representation learning
	Effects of introducing label co-occurrence
	Effects of additional information on label embedding

	Parameter sensitivity of CoEAI-GCN

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


